

ERDC MSRC Resource
Editorial Staff

Chief Editor/Technology Transfer Specialist
Rose J. Dykes

Interdisciplinary Coordinator
Mary L. “Dean” Hampton

Visual Information Specialist
Betty Watson

from the editor…

Many Government organizations have a substantive interest in the modernization of high performance comput-
ing. These organizations share a need for technical information.

In his introductory article, guest writer Dr. Larry Davis explains the importance of benchmarking as a source of
information for decision makers. As Deputy Director for the Department of Defense High Performance Comput-
ing Modernization Program (HPCMP), Dr. Davis has engaged various Government organizations to develop and
share benchmarking results.

This issue of the Resource represents a cooperative effort among the HPCMP, Oak Ridge National Laboratory,
the Air Force Research Laboratory, Ames Laboratory, the National Aeronautics and Space Administration Langley
Research Center, the National Center for Atmospheric Research, as well as the Army Research Laboratory and a
commercial partner, Instrumental, Inc. The results of this cooperation include a better understanding of perfor-
mance within the normal operating environment of today's high performance computing centers, where hundreds
of jobs may contend for resources.

As John West, Director of the U.S. Army Engineer Research and Development Center Major Shared Resource
Center (ERDC MSRC), points out in his “from the director” article, the benefits of cooperative benchmarking
extend well beyond the acquisition process.

ERDC MSRC HPC Service Center
Web site: www.erdc.hpc.mil

E-mail: msrchelp@erdc.hpc.mil
Telephone: 1-800-500-4722

The ERDC MSRC welcomes comments and suggestions regarding the Resource and invites article submissions.
Please send submissions to the above e-mail address.

The contents of this publication are not to be used for advertising, publication, or promotional purposes. Citation of
trade names does not constitute an official endorsement or approval of the use of such commercial products.

Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s)
and do not necessarily reflect the views of the DoD.

Design and layout provided by the Visual Production Center, Information Technology Laboratory, U.S. Army
Engineer Research and Development Center.

Approved for public release; distribution is unlimited.

from the director...

Welcome to the latest issue of the Resource. We
always strive to provide our readers and users with a
broad view of what’s going on in the Center in this
publication. From research to new equipment deploy-
ment and policy updates, we try to fashion each issue of
the Resource into a vehicle for strengthening your
relationship to us and to improving your access to the
finest people, hardware, and software available to
supercomputing users anywhere.

In this issue we depart a little from our established
formula to shed some light into an often neglected - but
critical - corner of the ERDC MSRC’s research efforts
by taking an in-depth look at the benchmarking process
used to acquire new hardware for our users. Acquiring
systems to serve the very diverse needs of the High
Performance Computing Modernization Program (HPCMP) user community is a challenging task. ERDC has
played a leading role in the Program’s benchmarking efforts for the yearly Technology Insertion since the first joint
acquisition in 2001, and that leadership role continues today. Through assessing the performance of potential
technical solutions via benchmarks - both real and synthetic applications - we are able to construct technical
solutions to meet your computational needs and to provide a quantitative framework for measuring the effective-
ness of that solution.

But ERDC’s involvement in benchmarking has benefits for users that extend beyond the acquisition of the best
machine for the job. Each year the ERDC Computational Science and Engineering group spends a tremendous
amount of time analyzing, porting, building, and running the HPCMP user community’s most important computa-
tional applications. This experience has given us an understanding of your applications, the way in which you do
your work, and the science you are trying to accomplish that is one-of-a-kind in its depth and breadth. This is
experience that we rely on every day as we improve our services to you in administration and configuration of the
systems, in data analysis and visualization, in computational science, and in customer service.

I hope this special issue of the Resource will give you added insight into the tremendous value that the
benchmarking effort has to the Program as a whole, and to you as an individual user.

As always, I want to hear from you! If you’d like to let me know how we’re doing, share a success story, or
make a suggestion for ways to improve our service, drop me a line at john.e.west@erdc.usace.army.mil.

John E. West, Director
Major Shared Resource Center
U.S. Army Engineer Research and Development Center
Vicksburg, MS

ERDC MSRC Resource, Spring 2005 1

Contents
from the director .. 1

DoD HPCMP Requires Accurate Benchmarks to Choose HPC Systems 3
Dr. Larry P. Davis, Deputy Director, HPCMP

Role of Application Benchmarks in the DoD HPC Acquisition Process 4
Dr. William A. Ward, Jr., CS&E Group Lead, ERDC MSRC

Benchmarking AERO, an Aeroelastic CFD/CSM Application .. 6
Dr. Raymond E. Gordnier, Senior Research Aerospace Engineer, Air Force Research Laboratory,
and Dr. Thomas C. Oppe, Computational Scientist, CS&E Group, ERDC MSRC

Benchmarking AVUS, an Aerospace CFD Solver for Unstructured Grids 8
Dr. Victor S. Burnley, Research Aerospace Engineer, Air Force Research Laboratory,
Dr. Matthew J. Grismer, Senior Research Aerospace Engineer, Air Force Research Laboratory,
and Dr. Thomas C. Oppe, Computational Scientist, CS&E Group, ERDC MSRC

Benchmarking GAMESS, a Quantum Chemistry Code ... 10
Dr. Paul M. Bennett, Computational Scientist, CS&E Group, ERDC MSRC, and
Dr. Mark S. Gordon, Head of Gordon Research Group, Ames Laboratory, Iowa State University

Benchmarking HYCOM, a Structured Grid Ocean Model ... 12
Carrie L. Leach, Computational Scientist, CS&E Group, ERDC MSRC

Benchmarking OOCORE, an Out-of-Core Matrix Solver .. 14
Dr. Samuel B. Cable, Computational Scientist, CS&E Group, ERDC MSRC, and
Dr. Eduardo D’ Azevedo, Computational Mathematics Group Lead, Oak Ridge National Laboratory

Benchmarking OVERFLOW 2, a Structured CFD Code .. 16
Dr. Pieter G. Buning, Aerospace Engineer, NASA Langley Research Center, and
Dr. Samuel B. Cable, Computational Scientist, CS&E Group, ERDC MSRC

Benchmarking RF-CTH, a Shock Physics Code ... 18
Robert W. Alter, Computational Scientist, CS&E Group, ERDC MSRC

Benchmarking WRF, a New-Generation Weather Research and Forecasting Model 19
John G. Michalakes, Senior Software Engineer, Mesoscale and Microscale Meteorology,
National Center for Atmospheric Research, and Dr. Thomas C. Oppe, Computational Scientist,
CS&E Group, ERDC MSRC

Synthetic Benchmarks for TI-05 ... 21
Cal Kirchhof, BPA Program Manager, Instrumental, Inc., and
Henry Newman, Chief Technical Officer, Instrumental, Inc.

Benchmarking the Locality Space with HPCC ... 22
Dr. Paul M. Bennett, Computational Scientist, CS&E Group, ERDC MSRC

Stat.pl: Automating the Scoring of Benchmark Systems .. 24
Dr. Alvaro Fernández, Computational Scientist, CS&E Group, ERDC MSRC, and
Dr. William A. Ward, Jr., CS&E Group Lead, ERDC MSRC

Analyzing Price per Performance .. 26
Dr. Roy L. Campbell, Jr., HPCMP Performance Team Vice-Chair, ARL

2 ERDC MSRC Resource, Spring 2005

The Department of Defense (DoD) High Perfor-
mance Computing Modernization Program (HPCMP)
acquires over $50 million worth of new high perfor-
mance computers each year. With a wide variety of
system architectures from many vendors, how does it
know which ones to choose? Along with very impor-
tant usability criteria, performance of these systems is
critically important. And how does the Program
measure performance? A careful measurement of
performance of offered systems on a set of bench-
marks representative of the workload of the Program
user community fulfills this task.

As discussed in detail in several of the following
articles, the HPCMP uses a mix of synthetic bench-
marks and application programs to represent its
workload. A recent study by several Benchmark Team
members of requirements stated by users and current
usage on the Program’s systems produced a set of
eight application benchmarks for the Fiscal Year (FY)
2005 acquisition activity and nine application bench-
marks for the FY 2006 activity. As a set, these applica-
tion benchmarks directly represent approximately 40
percent of the Program’s non-real-time workload (as
run on the shared, allocated systems) and indirectly
represent about 70 percent of the workload. A key set
of synthetic benchmarks are used to supplement the
application benchmarks and address any gaps in the
representation of the complete Program workload. The
entire set of Program benchmarks is run on all existing
HPCMP systems each year and then provided to
prospective hardware vendors to run on their offered
systems, with timings to be used in the evaluation
process each year.

Once the vendor-provided timings on the benchmark
set are received, performance scoring of these timings
for each benchmark on each system is done by a
quantitative process that plots a power-law curve of the
performance (reciprocal of the run time) vs. the
number of processors and interpolates that curve at key
system sizes that represent how the system would
likely be used in production. These times at key system
sizes are then compared with the run time measured on
the standard DoD system for that year; for FY 2005,
that standard system was Marcellus, the IBM Power4
at the Naval Oceanographic Office Major Shared
Resource Center (NAVO MSRC), and for FY 2006,
the standard system is the newer IBM Power4+ at
NAVO. Thus, each system score on each benchmark
is a relative performance value compared with the

DoD HPCMP Requires Accurate Benchmarks
to Choose HPC Systems
By Dr. Larry P. Davis

DoD standard system. In
addition, a size-independent
system score on each bench-
mark can be deduced from the
curve by calculating the
number of processors on the
scored system that it would
take to match the performance
(run time) for the standard DoD
system on that benchmark. This
value (standard number of processors) becomes a
basic performance score for each system.

Performance, however, is not the only consideration.
The Program seeks to acquire not only the most
powerful systems but also the most total performance
across its entire acquisition on the set of application test
cases that represent its workload. To accomplish this,
the Program has developed an optimization technique
that maximizes total overall performance across the
benchmark suite for a fixed acquisition budget. This
process effectively determines price/performance for a
great number of possible solution sets, or sets of
acquired systems. The optimizer and its use are
described in a following article.

Finally, the Program is investigating benchmarking
and scoring methods that will relieve some of the
burden of running large benchmark sets on the vendor
while providing a more consistent basis of scoring to
make acquisition decisions. The basis of these investi-
gations is a performance modeling and prediction
methodology pioneered by Allan Snavely and Laura
Carrington from the University of California at San
Diego. This methodology relies on benchmark results
from a few simple synthetic probes (already part of the
HPCMP synthetic benchmark suite) to measure system
performance in key basic system processes, such as
memory operations. The performance on these probes
is then convolved with a detailed trace of the operations
that each application test case performs to produce a
predicted performance of that application test case on
the system for which the synthetic performance has
been measured. The plan is to begin using results from
these performance predictions in a limited way for the
FY 2006 acquisitions.

The tremendous progress the benchmarking and
performance modeling activities have made over the
last few years has been directly attributable to the hard
and productive work that all members of the Bench-
mark Team have performed. Key groups that have

Dr. Larry P. Davis
Deputy Director

HPCMP

ERDC MSRC Resource, Spring 2005 3

made major contributions include the Computational
Science and Engineering (CS&E) group from the U.S.
Army Engineer Research and Development Center
(ERDC) MSRC (applications), Instrumental, Inc.
(synthetics), the group from the University of California
at San Diego (performance modeling), and the Army
Research Laboratory (ARL) MSRC (scoring and
optimizer development). In addition, support from the
NAVO MSRC, the Aeronautical Systems Center

(ASC) MSRC, the Arctic Region Supercomputing
Center (ARSC), the Maui High Performance Comput-
ing Center (MHPCC), and the Army High Perfor-
mance Computing Research Center (AHPCRC) has
been very helpful. All look forward to significant
progress over the next few years as performance
modeling and prediction become a more integral part in
the entire benchmarking process.

The DoD HPCMP uses a comprehensive perfor-
mance evaluation process in its Technology Insertion
(TI) acquisition process for high performance computer
systems. When purchasing desktop, or even modest-
size server class systems, the Government goes
through no such elaborate process because the systems
are typically commodities, the characteristics of the
systems are well-known, and the risk to the Govern-
ment of overpaying for an underperforming system is
low. However, when acquiring a state-of-the-art,
limited-production high performance computing (HPC)
system costing millions of dollars, the risk is higher and
so the DoD must be more thorough and cautious.
Benchmarking is an integral part of this approach.

Previously presented in the Fall 2000 edition of The
Resource, a spectrum of possible types of benchmark
programs with respect to
representativeness, maintain-
ability, and scalability is
illustrated in Figure 1. Syn-
thetic benchmarks, compact
artificial programs whose sole
purpose is to measure some
aspect of system performance
(e.g., floating-point rate,
memory bandwidth, input/
output (I/O) capability), are
less representative, but more
maintainable and scalable. The
Streams benchmark is an
example of this type. Next, toy
programs, such as Prime
Sieve; package kernels, such
as LINPACK; and application
kernels, which are compute-
intensive fragments

Role of Application Benchmarks in the DoD
HPC Acquisition Process
By Dr. William A. Ward, Jr.

extracted from actual pro-
grams, span the middle of the
spectrum. Finally, complete
application programs are the
most representative, but
because of their size and
complexity, are less maintainable
and (usually) less scalable. The
DoD HPCMP uses benchmark
components from the first and last
of these categories. Each of the synthetic benchmarks,
discussed in a subsequent article by Cal Kirchhof and
Henry Newman, effectively delineates the edge of the
“performance envelope” by stressing a single-system
component, e.g., central processing unit (CPU),
memory, I/O subsystem. These quickly identify any

Dr. William A. Ward, Jr.
CS&E Group Lead

ERDC MSRC

Figure 1. Spectrum of possible types of benchmark programs

4 ERDC MSRC Resource, Spring 2005

obvious system performance shortcomings and gather
data for performance modeling. The purpose of the
application programs in the DoD HPC benchmark, on
the other hand, is to stress the system with codes that
represent DoD’s actual workload in the various computa-
tional technology areas (CTAs) and to measure the
performance a user would experience when running an
actual application.

The application program portion of a typical DoD TI
benchmark is called the application benchmark test
package. The test package includes program source
code (or directions for obtaining it), makefiles, sample
batch submission scripts, and so forth. Each program
(eight programs were used in Technology Insertion
2005 (TI-05)), typically has two sets of input data,
standard and large; these are called test cases. The test
package includes correct job output for at least one
processor count for each test case plus a script for
automatically verifying correctness at arbitrary proces-
sor counts. Members of the CS&E group at the ERDC
MSRC validate the test package by running each of the
test cases on the current DoD baseline system. For TI-
05 this system was Marcellus, a 1,328-processor, 1.3-
GHz IBM p690 (IBM Power4) at the NAVO MSRC;
for TI-06, the system will be Kraken, the 2,832-
processor, 1.7-GHz IBM p655 (IBM Power4+), also at
NAVO. These runs are also used to obtain baseline
times that provide performance expectations for
prospective vendors. Benchmark program input data
are adapted so that the baseline times for standard test
cases, running on 64 processors, and for large test
cases running on 384 processors, are roughly 1 hour
(on the baseline system). The codes and test cases
used for TI-05 and their performance on various
Government-owned systems are described in several of
the following articles.

After a prototype of the application benchmark test
package is constructed, it is sent to the staff at the ASC
MSRC for a dry run as a final quality control check.
Based on feedback from ASC, the CS&E group makes
any necessary modifications and resubmits the package
to ASC, where it is burned onto DVDs for distribution
to prospective vendors. Vendors are given several
months to prepare their benchmark response. To
participate in the TI process, a system vendor must, at
a minimum, submit job times for at least one test case;
realistically, however, most vendors submit complete or
nearly complete sets of times, sometimes for multiple
systems, to improve their competitiveness. For each
test case, vendors are required to submit job wall times
for no less than three processor counts. At least one of

these times is required to be from an actual system
identical to, or highly similar to, the offered system.
Because the vendor’s inventory may not include a full-
scale system of the size necessary to run some of the
tests, two of the three times may be estimates. How-
ever, the Government reserves the sole discretion for
determining the acceptability of such estimated times
and times from substitute systems, and the vendor must
meet any estimates should the system be selected.

For TI-05, while the vendors were running the tests
on their systems, the CS&E group along with staff
members from the other three MSRCs and several
other DoD HPC sites, ran the tests on most DoD HPC
systems. For TI-06, the CS&E group has the sole
responsibility for running all of the application test cases
on all unclassified (and a few classified) systems. The
purpose of gathering these times is to accurately
quantify DoD’s HPC capability and capacity in each
CTA. Then, one of the criteria for selecting a new
system is how well it complements DoD’s already
installed computational resources. This part of the
process is described in following articles on scoring by
Dr. Alvaro Fernández and this author, and in another
article on system selection by Dr. Roy L. Campbell, Jr.

As presented in a General Services Administration
(GSA) handbook (Use and Specifications of Remote
Terminal Emulation in ADP System Acquisitions), the
success of benchmarking in system selection is judged
by how well it meets several goals. The first two goals
are to minimize time and cost of acquisition and to
maximize competitiveness; the TI process does this by
providing a well-documented benchmark framework
that is consistent from year to year. The next two goals,
to maximize quality of system sizing and to maximize
benchmark representativeness, are accomplished by
selecting test cases that impose a significant computa-
tional load on candidate systems and by using applica-
tion programs to represent the DoD CTAs that use the
most CPU hours on DoD HPC systems. The three
final goals, to minimize benchmark discrepancies, to
maximize benchmark uniformity, and to maximize
benchmark repeatability, are ensured by a validation
process that runs the test package on many systems, by
providing comprehensive guidance to vendors on
running the test suite, and finally by carefully checking
vendor benchmark responses and requesting new runs
if necessary to remedy deficiencies. TI-06 will be the
sixth year of implementing the application test package
with these goals in mind, and the result has been
increased vendor participation and improved quality of
vendor submissions.

ERDC MSRC Resource, Spring 2005 5

AERO is the informal name given to an aeroelastic
computational fluid dynamics/computational structural
mechanics (CFD/CSM) code developed in the Compu-
tational Sciences Branch in the Air Vehicles Director-
ate of the Air Force Research Laboratory to investigate
basic nonlinear fluid/structure interactions. The code
evolved from the FDL3DI flow solver and is used
primarily in aerospace research applications.

The system of partial differential equations modeled
by AERO is mixed elliptic/hyperbolic, and the overall
solution method is implicit. The physical model used in
the code is integrated multiphysics over a physical
domain. The fluid dynamics part of the code is a finite
difference formulation that solves the full Navier-
Stokes equations. The structures part of the code is a
finite element formulation for solving the von Karman
plate equations. Implicit coupling with the finite element
structural solver is accomplished via a subiteration
procedure. AERO uses an Eulerian coordinate frame-
work with the mesh being dynamic, structured, and
anisotropic. To perform the fluid/structure interaction
computations, the structure deflects in response to the
imposed loads. The fluid grid is then moved to accom-
modate the new position of the structure. This
remeshing is accomplished by simple transfinite interpo-
lation techniques.

The AERO code is written entirely in FORTRAN 90
and, thus, should be portable to any platform that has a
FORTRAN 90 compliant compiler. AERO also
contains calls to several BLAS and LAPACK routines,
in particular a banded matrix solution routine from
LAPACK. Fortran equivalents of all the needed
BLAS and LAPACK routines were supplied in the
TI-05 AERO distribution in the event that vendor-
optimized libraries were not available. AERO contains
approximately 15,000 lines of code.

AERO is unique among the components of the TI-05
application benchmark test suite in that it has no explicit
parallelism. It was originally developed as a vectorized
code appropriate for running serially on the Cray C90
and Cray SV1 platforms. Thus, the source code
contains no message passing interface (MPI) calls or
OpenMP directives. Implicit parallelism in a shared-
memory environment must be achieved through
autoparallelizing compilers or by linking to threaded
BLAS and LAPACK libraries. Alternatively, explicit
parallelism can be achieved by the manual insertion of
OpenMP directives. In any case, the parallel scalability
is limited to the numbers of CPUs on a shared-memory
node. AERO cannot run in distributed-memory mode.

Benchmarking AERO, an Aeroelastic CFD/CSM Application
By Drs. Raymond E. Gordnier and Thomas C. Oppe

Because AERO had its roots as a vector code, the
execution of AERO on a microprocessor-based plat-
form is typically limited by the bandwidth to memory.
Many loops involve non-unit stride memory accesses
that incurred no penalty on the traditional Cray PVP
(parallel vector processor) platforms, but which were
detrimental to efficient execution on HPC platforms
employing microprocessors with caches. Several HPC
vendors participating in TI-05 attempted to improve the
speed of execution by a variety of strategies, such as
(1) interchanging the order of loop indices in a series of
nested loops to achieve better cache utilization, (2) inlining
calls to frequently called subroutines, (3) padding or
rearranging arrays in COMMON blocks to better align
the arrays with cache line boundaries, (4) manually
inserting OpenMP compiler directives to achieve loop
parallelization, (5) linking in optimized intrinsic math-
ematics (e.g., SIN, EXP) or BLAS and LAPACK
libraries, and (6) compiling the source code with an
autoparallelizing compiler option or preprocessor.

Only one input data set was supplied for AERO in
TI-05. This particular problem computed the supersonic
flutter of a flexible panel. (Figures 1 and 2 show
visualizations of the flexible panel.) A large 240-MByte
binary restart input file was read at the start of execu-
tion, and another large binary file of the same size was
written upon program termination. Program execution
required approximately 1.1 GBytes of memory to run.

In an experiment, the unoptimized AERO code was
compiled with the autoparallelizing compiler option and
run on an SGI Origin 3900 at the ERDC MSRC using
700-MHz MIPS chips and an IBM p655 at the NAVO
MSRC using 1.7-GHz Power4+ chips. In both cases,

Dr. Raymond E. Gordnier
Senior Research

Aerospace Engineer
Air Force Research

Laboratory

Dr. Thomas C. Oppe
Computational Scientist

CS&E Group
ERDC MSRC

6 ERDC MSRC Resource, Spring 2005

the executable was linked with the threaded versions of
the BLAS and LAPACK libraries (i.e., “-lscs_mp” for
SGI and “-lesslsmp” for IBM). The autoparallelizing
compiler options for SGI and IBM were “-apo -mp”
and “-qsmp”, respectively. The IBM compilation
required a FORTRAN version of the LAPACK routine

Figure 1. Pressure and vorticity magnitude contours
showing the interaction of the surface boundary layer

with a three-dimensional (3-D) flexible panel

Figure 2. Isosurface of vorticity magnitude showing 3-D,
finger-like vortical structures over a 3-D flexible panel

Figure 3. AERO performance obtained using autoparallelization

since this routine was not in the IBM Engineering and
Scientific Subroutine Library (ESSL). The resulting
times in seconds as a function of the number of threads
are given in Figure 3. A parallel speedup of only 2.5
was attained using the autoparallelizing option for both
machines.

ERDC MSRC Resource, Spring 2005 7

The Air Vehicles Unstructured Solver (AVUS), formerly called Cobalt60, is a
parallel, implicit CFD code that solves the compressible Euler and Navier-Stokes
equations subject to the ideal gas equation of state. Two-dimensional (2-D), 3-D, and
axisymmetric spaces can be modeled. Unstructured grids with arbitrary cell types
are permitted. The developers’ goal was to make AVUS as general, flexible, robust,
accurate, and easy to use as possible. The fundamental algorithm of AVUS is con-
ceptually based on the exact Riemann solver of Godunov, a finite-volume, cell-
centered method that is first-order accurate in both space and time. However, in
practice, Godunov’s exact Riemann solver is very expensive, so the more efficient
method of Gottlieb and Groth is employed. Second-order accuracy in space is
patterned after van Leer’s monotone upwind scheme for scalar conservation laws
(MUSCL), where the flow state is assumed to vary linearly within each cell. The
linear variations (gradients) are constructed by a central-difference, least-squares
method that, in turn, is solved by QR factorization. In cells requiring limiting, the
gradients are corrected to give a one-sided least-squares scheme. First- and second-
order temporal accuracy is achieved using the unconditionally stable point-implicit
scheme as implemented by Tomaro, Strang, and Sankar.

Second-order accurate viscous terms, loosely patterned after the work of
MacCormack, are added to the above inviscid algorithm to yield a Navier-Stokes
solver. The temporal accuracy of the viscous terms is equivalent to that of the
inviscid terms. Several turbulence models, including the Spalart-Allmaras model,
Wilcox’s k-w model, and Mentor’s SST model, are available to model the fine-scale
effects of turbulence. Detached eddy simulations (DES) can also be performed with
AVUS. Lastly, much effort was devoted to boundary conditions to achieve high
accuracy with robustness and flexibility.

The model grid may be composed of cells of arbitrary type (tetrahedra, quadrilater-
als, pyramids, triangles, etc.); different cell types are permitted within the same grid.
The set of boundaries forming each cell, called faces, may also be arbitrary (tri-
angles, pentagons, lines, etc.), though each cell boundary face should be convex. The
grid is decomposed into subdomains called zones, permitting parallel processing in
which computations in each zone are done by a separate processor. The domain
decomposition is accomplished using ParMETIS, the MPI-based parallel grid-
partitioning library from the University of Minnesota that performs both static and
dynamic graph partitioning. ParMETIS is highly portable and easy to install on a
variety of platforms. AVUS uses ParMETIS to partition a multidimensional grid
among a set of processors, producing roughly equally sized zones so that the compu-
tational load among processors is well balanced. In addition, each zone has a mini-
mized surface area, thus reducing the amount of communication required between
zones. Consequently, AVUS’s excellent scalability may be attributed to two charac-
teristics: (1) good load balancing with minimal communications overhead, attributable
to ParMETIS, and (2) high computational intensity requiring little communication.

Development of AVUS began in 1990 at the Air Force Research Laboratory
(AFRL), Aeronautical Sciences Division, Computational Sciences Branch. The
original code, Cobalt60, was developed under the CFD CTA of the HPCMP’s Soft-
ware Applications Support (formerly known as the Common High Performance
Computing Software Support Initiative (CHSSI)) and can be distributed only to U.S.
citizens.

AVUS is written entirely in standard FORTRAN 90 with the exception of one
utility routine and the ParMETIS library, which are written in C. MPI is used to

Benchmarking AVUS, an Aerospace
CFD Solver for Unstructured Grids
Drs. Victor S. Burnley, Matthew J. Grismer, and Thomas C. Oppe

Dr. Thomas C. Oppe
Computational Scientist

CS&E Group
 ERDC MSRC

Dr. Victor S. Burnley
Research Aerospace

Engineer
Air Force Research

Laboratory

Dr. Matthew J. Grismer
Senior Research

Aerospace Engineer
Air Force Research

Laboratory

8 ERDC MSRC Resource, Spring 2005

achieve parallelism. Hence,
AVUS is quite portable and
has been successfully run
on IBM SPs, SGI Origins,
Compaq SC40/45s, the
Cray X1, Linux clusters,
and Mac OS X clusters.

AVUS is commonly used
to model fluid flow and
turbulence around complex
objects. For example,
Figure 1 depicts the
surface-pressure distribu-
tion on an F/A-18C, as
computed by AVUS. The
number of cells in a model
typically ranges from
several hundred thousand
to tens of millions, while the
number of processors used
ranges from tens to
thousands, depending on
the size of the grid.

For TI-05, two test
cases were supplied. The
first test case, denoted the
standard input set, was a
wind tunnel model of a

Figure 1. Surface-pressure distribution on an F/A-18C

wing with a flap and endplates. It used 7,287,723 cells and ran for 100 time-steps.
The second test case, denoted the large input set, modeled a generic pilotless
aircraft, or UAV (uninhabited air vehicle), using 24,040,002 cells and running for
150 time-steps. Both of these cases were 3-D and modeled turbulent viscous flow
over complicated geometries. Each test case was defined by two input files: a
small ASCII (American Standard Code for Information Interchange) file defining
the boundary conditions and a large IEEE (Institute of Electrical and Electronics
Engineers) binary file defining the grid. Figures 2 and 3 contain timing data from
running the standard and large data sets, respectively, on various MSRC platforms.
Superlinear speedups occur for several processor counts because of improved
cache performance as the sizes of the subdomains decrease.

Figure 2. AVUS performance for the standard test case on selected DoD HPC platforms

ERDC MSRC Resource, Spring 2005 9

Dr. Mark S. Gordon
Head of Gordon
Research Group
Ames Laboratory

Iowa State University

Dr. Paul M. Bennett
Computational

Scientist
CS&E Group
ERDC MSRC

Benchmarking GAMESS, a Quantum Chemistry Code
By Drs. Paul M. Bennett and Mark S. Gordon

The General Atomic and Molecular Electronic Structure
System (GAMESS) is a code for computational quantum
chemistry, available at http://www.msg.ameslab.gov/GAMESS/
GAMESS.html. It is an ab initio code in that material properties
may be calculated from first principles, although semi-empirical
methods are available as well. GAMESS evolved from an early
version of HONDO, which was developed using funding from
the National Science Foundation (NSF), the Department of
Energy (DOE), and IBM. Development continues at Iowa State
University with sponsorship from the Air Force Office of
Scientific Research and, more recently, the DOE. Many indi-
viduals and several research organizations have contributed to
the development of GAMESS. The contributions can be found in
the user’s guide, which accompanies the source code distribu-
tion. The developers would especially like to acknowledge two
Software Applications Support (formerly CHSSI) projects
funded by the DoD HPCMP that were used to develop signifi-
cant portions of GAMESS.

GAMESS has an extensive set of capabilities. Following
calculation of the molecular energy, GAMESS users may direct
the code to calculate analytic and numerical gradients, analytic
and numerical Hessians, and other properties. GAMESS also
provides a variety of wave functions to use in the computations,
including restricted Hartree-Fock, unrestricted Hartree-Fock,

restricted open-shell Hartree-Fock,
multiconfigurational self-consistent field,
generalized valence bond, configuration
interaction, second-order perturbation theory,
and coupled cluster. A complete description of
the program’s capabilities and the input
language interface may be found in the user’s
guide.

Figure 3. AVUS performance for the large test case on selected DoD HPC platforms

10 ERDC MSRC Resource, Spring 2005

GAMESS does not use numerical grids for its
computations. Instead, integrals modeling the energies
of the electron shells are computed using analytic
expressions and recursion formulae. More details can
be found in the user’s guide.

Figure 1 depicts a POSS (polyhedral oligomeric
silsesquioxane) adsorbed on a cluster that represents
the Si(100) surface. POSS are very important species,
as they are resistant to extreme environments and can
function as coatings as well as viscosity modifiers.
Considerable controversy has arisen regarding the two
possible mechanisms (shown in the figure) for adsorp-
tion of this POSS onto Si(100). Using the ERDC
MSRC Cray T3E system, Tejerina and Gordon were
able to use very high levels of theory in GAMESS to
provide a consistent and accurate comparison of the
two mechanisms.

The second data set, or large test case, was intended
to require about 1 hour on 384 CPUs and between 0.5
and 1.0 GBytes of memory on 256 CPUs of the
reference HPC system. Perfect scaling of parallel
computation is indicated by the dotted black lines. The

Compaq SC45, the IBM e1350, and the IBM Power4+
all outperformed the reference system for this test
case. All of the other systems took longer. Only the
SGI Origin 3900 demonstrated superscaling. GAMESS
scaled well on all of the systems, with the IBM Power
4+ again giving the worst scalability.

Figure 2 presents benchmark data obtained during
the TI-05 hardware acquisition process. The bench-
mark data consist of two series of runs performed on
the reference HPC system, the IBM Power4 p690 at
the NAVO MSRC, and several other DoD HPC
systems. The first series of runs, called the standard
test case, used a data set intended to require about 1
hour on 64 CPUs on the reference system. Perfect
scaling of parallel computation is indicated by the dotted
black lines. Most systems outperformed the reference
system on this benchmark, with the best times pro-
duced by the Cray X1, the IBM e1350, and the IBM
Power4+. Only the Cray X1 demonstrated
superscaling. All of the other systems scaled less
efficiently, with the IBM Power 4+ losing efficiency
most rapidly.

Figure 1. A POSS adsorbed on a cluster representing the Si(100) surface

ERDC MSRC Resource, Spring 2005 11

12 ERDC MSRC Resource, Spring 2005

The HYbrid Coordinate Ocean Model (HYCOM),
like its predecessors, the Naval Research Laboratory
(NRL) Layered Ocean Model (NLOM) and the Miami
Isopycnic-Coordinate Ocean Model (MICOM), is
isopycnal (uses traditional isopycnic vertical coordi-
nates) in the open, stratified ocean. However, HYCOM
utilizes a hybrid (generalized) vertical coordinate that
allows an arbitrary partitioning between density coordi-

Benchmarking HYCOM, a Structural Grid Ocean Model
By Carrie L Leach

nates (i.e., isopycnals) and
depth coordinates on a time-
step by time-step basis, and so
smoothly transitions to a terrain-
following coordinate in shallow
coastal regions and to z-level
coordinates in the mixed layer
and unstratified waters.
HYCOM is an open-source
structured grid ocean model,
consisting of about 31,000 lines
of FORTRAN 90 code,
downloadable from http://
hycom.rsmas.miami.edu.

HYCOM’s basic
parallelization strategy is
domain decomposition, i.e., the region is divided into
smaller subdomains, or tiles, and each processor owns
one tile with off-tile communication via either MPI or
Cray’s SHMEM library. Figure 1 shows one such tiling
for a global domain, consisting of 600 (30 by 20)
approximately equal-sized tiles, but 174 all-land tiles are
discarded leaving 426 MPI tasks, each owning a single
tile. This is the large TI-05 case, and each tile containsFigure 1. Tiling for a global domain

Carrie L. Leach
Computational

Scientist
CS&E Group
ERDC MSRC

Figure 2. Benchmark data obtained for TI-05 acquisition process

TI-05 GAMESS standard test case

TI-05 GAMESS large test case

Figure 3. TI-05 large HYCOM test case

ERDC MSRC Resource, Spring 2005 13

about 125 by 175 by 26 grid points.
A halo is added around each tile to
allow communications to be com-
pletely separated from the compu-
tational kernel. Rather than the
conventional one- or two-element-
wide halo, HYCOM’s halo is six
elements wide and is consumed
over several operations to minimize
communication. HYCOM also
allows parallel-ization via loop-level
OpenMP directives alone or via
both domain decomposition and
OpenMP.

In the TI-05 benchmarking suite,
the two fully global HYCOM test
cases are standard and large.
These are configured in exactly the
same way as normal production
runs, other than shortening the
general 30 model-
day extent and
generating the
initial state from
representative
ocean profiles
instead of using
a restart file. The
standard test case
runs one model-day
with 1/4° (equatorial)
resolution, while
 the large test case
runs half a model-
day with 1/12°
resolution. In
each case a repre-
sentative amount
of I/O is included,
and the reported
time is wall time
in seconds for the
 entire run.

Figures 2 and 3
show the test
cases’ time perfor-
mance on the
following DoD
HPCMP machines:
Stryker, a 2,304-CPU
IBM Cluster e1350
at ARL; Kraken, a
2,800-CPU IBM
POWER4+

at NAVO; Marcellus, a 1,344-CPU
IBM POWER4 at NAVO; Habu, a
976-CPU IBM POWER3 at NAVO;
Emerald, a 488-CPU Compaq SC45
at ERDC; Opal, a 488-CPU Compaq
SC40 at ERDC; Silicon or Sand,
identical 504-CPU SGI Origin 3900s
at ERDC; and Diamond, a 60-MSP
Cray X1 at ERDC. The X1 times
were obtained by running Cray’s
optimized version of HYCOM on the
standard case. The large case needs
a minimum of 64 CPUs (too many to
run on Diamond) and is configured
for a maximum of more than 1,000
CPUs.

Performance is measured in run
time, which is the time in seconds
that TI-05 HYCOM runs at the
given processor count. (Lower run

time means better performance).
When a code’s run time decreases
as the number of processors in-
creases, the code is said to “scale.”
Perfect scaling is designated by the
dashed black lines. Based on this
time performance, a consistent
ranking of the various platforms may
be seen in Figures 2 and 3 except the
IBM P3 and the SGI Origin 3900
cross paths. Both test cases scale
well at the given processor counts.

This author is pleased to acknowl-
edge Dr. Alan J. Wallcraft, NRL,
Stennis Space Center, who provided
the HYCOM test cases, Figure 1,
and much of the HYCOM back-
ground information, and also gra-
ciously offered suggestions and
revisions.

Figure 2. TI-05 standard HYCOM test case

14 ERDC MSRC Resource, Spring 2005

OOCORE is the name given by the
CS&E benchmarking group to the out-
of-core solver developed by the
SCALAPACK group at The University
of Tennessee at Knoxville. OOCORE
has been included in the HPCMP TI
benchmark suite since 2004. Its impor-
tance in the TI suite is twofold. Firstly,
OOCORE can be configured to perform
by far the most disk I/O of any applica-
tion code in the suite. Therefore, it is the
best available application test of a
platform’s disk I/O capabilities. Secondly, it
serves as the kernel of the SWITCH code
from Northrop-Grumman Corporation,
which is run by DoD HPC users investi-
gating electromagnetic signatures.
Including SWITCH in the TI bench-
marks was desirable but impossible
because SWITCH in its entirety is a
classified code. However, the bulk of the
cycles taken up by a typical SWITCH
run are used by OOCORE, so
OOCORE can act as a useful
benchmarking surrogate for SWITCH.

OOCORE is an out-of-core solver,
meaning that it solves matrix equations
too large for the core memory of a set of
CPUs to contain. In lieu of core
memory, it stores the matrix data in
temporary files on the machine’s disk,
hence its large amount of disk I/O. A
single OOCORE input parameter allows
the user to artificially restrict the amount
of memory that can be used in storing
the matrix. Thus, large disk I/O can be
ensured when needed for testing pur-
poses such as benchmarking. OOCORE
can solve matrix equations by LU, QR,
and Cholesky factorization. LU factor-
ization is used in SWITCH, so it has
been chosen for the TI suites as well.
The TI-05 suite contained two runs of
OOCORE: a standard test case run that
solved a matrix equation with 40,000
double complex unknowns and a large
test case run with 69,000 double com-
plex unknowns. In both cases, the
machines were restricted to storing in
memory a relatively small maximum of 1.8
by 106 matrix elements per processor.

Benchmarking OOCORE, an Out-of-Core Matrix Solver
By Drs. Samuel B. Cable and Eduardo D’Azevedo

Figure 1 shows the performance of
the most common DoD HPC platforms
running the TI-05 OOCORE large test
case (69,000 double complex un-
knowns). The particular DoD machines
representing the various platforms here
are listed in Table 1. OOCORE was
indeed run on all the DoD MSRC HPC
machines. In general, different machines
of the same type behaved very similarly,
as expected. Figure 1 clearly shows that
OOCORE scales very well on most
platforms. That is, increasing the number
of processors by some factor cuts the
run time by approximately that same
factor. Scaling on the standard test case,
not shown here, was even better. The
only obvious exceptions to its good
scaling appear in the Compaq machines,
and, at very high processor numbers, the
SGI Origin 3800 and the IBM POWER4+.
The SGI Origin 3800 and the IBM
POWER4+ show diminishing returns
from added processors at their highest
processor numbers. For the SGI Origin
3800, a 1.5 increase in processor number
from 256 CPUs to 384 cuts the run time
by a factor of only 1.2. For the IBM
POWER4+, a twofold increase from
1,024 processors to 2,048 cuts the run
time by a factor of 1.25. One should
note that DoD HPC users currently run
their codes only very rarely above a few
hundred processors.

In the Compaq SC40 data, the overall
scaling is relatively flat compared with the
ideal case. The SC45 competes well with
the other DoD platforms on most of the
TI-05 codes. Its performance on
OOCORE is, therefore, less than
expected. The Compaq SC45 typically
achieved about 330 MFLOPS/proc on the
40,000 unknowns case and about 425
MFLOPS/proc with 69,000 unknowns.
These FLOP (floating-point operations per
second) rates are about 16 and 25 percent,
respectively, of its theoretical peak rate.
Several other platforms achieved rates of
25-35 percent of peak. When running the
40,000 unknowns case at low processor
counts, the Compaq SC45 was slower

Dr. Eduardo D’ Azevedo
Computational
Mathematics
Group Lead

Oak Ridge National
Laboratory

Dr. Samuel B. Cable
Computational Scientist

CS&E Group
ERDC MSRC

RDC MSRC Resource, Spring 2005 15

Figure 1. OOCORE performance for TI-05. The dashed line is a guide to the eye, indicating perfect scaling
of run time with number of processors. Specifically, perfect scaling is exhibited in any curve running

parallel to the dashed line

than the Compaq SC40, which has a very similar
architecture but a slower clock. The Compaq SC45
data shown here were taken from ERDC’s Emerald
machine. ASC’s SC45 hpc10 ran even slower, taking
91,242 seconds to factor the matrix for the 69,000 un-
knowns case on 64 processors (150 MFLOPS/proc) and
52,105 seconds on 128 processors (137 MFLOPS/
proc). As is well-known, the Compaq SCs are relatively
limited in disk I/O speed compared with some other

platforms. These results, then, probably reflect
OOCORE’s intensity in disk I/O operations. Why
OOCORE stresses the Compaq SC45 so much more
than the Compaq SC40 is unknown but is possibly related
to the Emerald machine’s disk configuration.

Author Dr. Eduardo D’Azevedo, Oak Ridge National
Laboratory, is a primary author of the OOCORE code.
Author Dr. Samuel B. Cable ran the OOCORE bench-
marks for TI-05.

16 ERDC MSRC Resource, Spring 2005

Complex, unsteady flow problems
abound in aerospace applications. From
winged flight to propulsion systems to
internal flows, more and more fluid
dynamics problems are being tackled
using computational simulations. OVER-
FLOW 2 is a flow solver for modeling
compressible, viscous flow, with a
moving body capability. It is the product
of merging the National Aeronautics and
Space Administration (NASA)-developed
OVERFLOW code with the 6-degree-
of-freedom moving body simulation
techniques incorporated in OVER-
FLOW-D, developed by Dr. Robert
Meakin and colleagues at the U.S. Army
Aeroflightdynamics Directorate at
NASA Ames Research Center in
California.

Begun in 1990, OVERFLOW devel-
opment was funded by the Space Shuttle
Program Office following the Challenger
accident. The code was an outgrowth of
existing CFD codes and methods in use
at NASA Ames and was used primarily
to simulate aerodynamic loading on the
shuttle launch configuration during
ascent, including Orbiter, External Tank,
and Solid Rocket Boosters. Further
applications were pursued in a number
of areas, including powered lift, ad-
vanced subsonic and supersonic trans-
port design, and launch vehicle aerody-
namics. The moving body capability
(which became OVERFLOW-D) was
also funded by the shuttle project, but
included collaboration with the Air Force
Arnold Engineering Development Center
and later the Army Ballistic Research
Laboratory. Applications of this capabil-
ity included store separation, submunition
dispense, and rotorcraft dynamics.
OVERFLOW 2 is currently being used
for a variety of civil- and defense-related
applications, including space shuttle
return-to-flight, capsule unsteady
aerodynamics, rotorcraft and wind
turbine aerodynamics, business jet and
antenna fairing design, and a novel dart-
dispense problem by the Navy.

The OVERFLOW 2 code simulates
the Reynolds-averaged Navier-Stokes
equations of fluid motion using finite
differences and implicit approximate
factorization methods. This involves the
solution of a set of penta-diagonal
matrices for every step as the equations
are iterated to a steady-state result, or
every subiteration for a time-accurate
process. The airflow is simulated on a
set of structured computational grids
representing the volume about a vehicle.
The use of structured grids allows
efficient memory access and matrix
solution procedures to be employed.
However, these grids can be overlapped
in a variety of ways to more conve-
niently represent complex shapes and to
allow relative motion between bodies or
components, such as the rotating blades
and tilting nacelles of the V-22 Tiltrotor
(Figure 1). Communication between the
component grids is handled through
automated hole cutting and interpolation
of boundary information.

Parallel computing in OVERFLOW 2
is accomplished using a hybrid approach.
At the coarse-grained level, component
grids are subdivided (if necessary) and
collected into groups. Each group is
assigned to a processor or group of
processors, with communication be-
tween groups handled using MPI. The
solution procedure for each component
grid includes fine-grained parallelism
using OpenMP, with each slice of the
grid processed in parallel. With these
two techniques, efficient use can be
made of both shared- and distributed-
memory architecture platforms.

In TI-05, OVERFLOW 2 was run
with two test cases, a standard test case
with about 30 million grid points (30MGP)
and a large test case with 120 million
grid points (120MGP). Figure 2 illus-
trates the performance of the more
common DoD HPC architectures in
running the 120MGP case of OVER-
FLOW 2. Overall performance on the
code is as expected. The Cray X1 is the

Benchmarking OVERFLOW 2, a Structured CFD Code
Drs. Pieter G. Buning and Samuel B. Cable

Dr. Samuel B. Cable
Computational Scientist

CS&E Group
ERDC MSRC

Dr. Pieter G. Buning
Aerospace Engineer

NASA Langley Research
Center

fastest machine, followed
by the relatively fast IBM
e1350, the IBM P4+, and
the Compaq SC45. The
SGI Origin 3800, a
somewhat older platform,
is the slowest. The P4+
performance is signifi-
cantly better than the old
P4 performance (not
shown), which performed
similarly to the Compaq
SC45.

Codes are run on
multiple processors to cut

run time by distributing the workload among the proces-
sors. A code “scales well” if increasing the number of
processors by some factor cuts the run time by ap-
proximately that same factor. Scaling in the standard
test case was quite good on most platforms. Figure 2
shows that the OVERFLOW 2 large test case scaled
well on the three IBM machines. (Insufficient data
were available to determine the scaling on the X1, but it
is showing good scaling in TI-06.) Scaling on the SC45
was marginal, while scaling on the SC40 and the SGI
machines was problematic. The SGI Origin 3800
behaves rather erratically in the 120MGP case, sharply
increasing run time from 128 to 256 CPUs, and then
decreasing again from 256 to 384 CPUs. The SGI
Origin 3900 and the Compaq SC40 both run the

120MGP case more slowly at 384 CPUs than at 256
CPUs.

In TI-06, OVERFLOW 2 is scaling much better on
these previously problematic platforms. Run times of all
cases run so far are monotonically decreasing across
the entire range of processors. This improvement is
due in part to interactions between the OVERFLOW 2
developers and the TI-05 application benchmark team.
In TI-05, the SGI machines were determined to be
taking inordinately long times to read the input data.
Subsequent improvements in OVERFLOW 2 remedied
this problem.

Author Dr. Pieter Buning is the primary author of the
OVERFLOW 2 code. Author Dr. Samuel B. Cable
ran the OVERFLOW 2 benchmarks for TI-05.

ERDC MSRC Resource, Spring 2005 17

Figure 2. Run times of OVERFLOW 2 on common DoD HPC platforms. The dashed line is a guide to the eye,
indicating how run times would scale on perfect multiprocessor machines. Specifically, perfect scaling

is exhibited in any curve running parallel to the dashed line

Figure 1. Airflow about the V-22 Tiltrotor as calculated by OVERFLOW 2 (Graphic courtesy of Mark Potsdam,
U.S. Army Aeroflightdynamics Directorate, NASA Ames Research Center, CA)

RF-CTH (Reduced Functionality CTH) was synthe-
sized from the 1999 export controlled version of CTH,
to provide a nonexport controlled benchmark code for
the DoD TI program. CTH is a family of codes devel-
oped by Sandia National Laboratories for modeling
complex multidimensional, multimaterial problems that
are characterized by large deformation and strong
shocks. CTH is widely used in the DOE and has become
one of the most heavily used applications in the DoD
research community. Since the beginning of the TI
process, either CTH or RF-CTH has been one of the
benchmark codes. RF-CTH has limited capabilities to
make it nonexport controlled as compared with the full
version of CTH, but it was designed to exhibit the same
benchmark performance as CTH. Development of RF-
CTH was done in an effort to facilitate the TI process,
whereby the HPC vendors do not have to sign export
control agreement to get a copy of the source code.

CTH is an acronym of an acronym; it stands for
“CSQ to the Three-Halves.” CSQ stands for
“CHARTD Squared,” where CHARTD stands for
Computational Hydrodynamics and Radiative Thermal
Diffusion. CHARTD, CSQ, and CTH are 1-, 2-, and
3-D codes, respectively. CTH can be compiled as a
serial or as a parallel MPI execution. The CTH soft-
ware family consists of CTHGEN, which sets the initial
configuration of the problem; CTHREZ, which rezones
the problem; CTHPLT, which produces graphics at
specified intervals; and CTH, which computes the
physics models (Hertel et al.). CTH is a time-domain,
structured-grid, Eulerian code that can run in 1-, 2-, or
3-D and commonly used Cartesian or cylindrical
coordinates. It is capable of using
adaptive mesh refinement (AMR)
to partition the grid or use
CTHGEN to partition the grid
onto each MPI process. CTH is
capable of modeling material
strength, factures, porous materi-
als, and high-explosive detonations
(Hertel et al.), where multiple
materials and voids can occupy a
single computational cell.

RF-CTH was developed from

the 1999 version of CTH by
stripping the code, physical
modes and material properties
that make CTH export con-
trolled. The basic shock
hydrodynamics were retained,
but all of the advanced material
equations, facture models, and
models of explosive behavior
were removed. A Simple Line
Interface Construction (SLIC)
model was retained for the
material interface reconstruc-
tion modeling. Finally, all FORTRAN comment lines
were removed to make it virtually impossible to restore
any lost capability. To date the TI test cases have
modeled a rod penetration into a thick plate. For
example, the TI-05 standard test case used an adaptive
mesh (AMR mesh) modeling a 7.67-cm-long rod made
of 10 materials penetrating a plate made of 8 materials
at a oblique angle of 73.5 degrees and having an initial
velocity of 1,210 meters per second. Each MPI process
could have a maximum of 520 blocks, where each
block contained 8 by 8 cells, with a maximum of five
mesh refinement levels. The TI-05 large test case used
a fixed grid requiring 240 GBytes of memory divided up
by the MPI process. The grid had 200 million cells
modeling the same rod and plate as in the standard test
case.

The performance of some of the existing MSRC
hardware for the standard TI-05 test cases is presented in
Figure 1. The benchmark performance was obtained on

18 ERDC MSRC Resource, Spring 2005

Benchmarking RF-CTH, a Shock Physics Code
By Robert W. Alter

Figure 1. RF-CTH performance for TI-05

Robert W. Alter
Computational

Scientist
CS&E Group
ERDC MSRC

Hertel, E. S., Jr.; Bell, R. L.; Elrick, M. G.;
Farnsworth, A. V.; Kerley, G. I.;
McGlaun, J. M.; Petney, S. V.; Silling, S.
A.; Taylor, P. A.; and Yarrington, L.,
CTH: A Software Family for Multi-
Dimensional Shock Physics Analysis,
Proceedings of the 19th International
Symposium on Shock Waves, Volume 1,
pages 377-382, Marseilles, France, 26-30
July 1993.

The Weather Research and Forecast (WRF) project
is a large, multi-institution effort to develop a next-
generation mesoscale forecast model and assimilation
system designed to advance both the understanding and
the prediction of mesoscale precipitation systems as
well as promote closer ties between the atmospheric
research and operational forecasting communities.
WRF can be applied to problems in storm-scale re-
search and prediction, air-quality modeling, wildfire
simulation, hurricane and tropical storm prediction,
regional climate, and operational numerical weather
prediction (NWP) (Figure 1).

Benchmarking WRF, a Next-Generation Weather Research
and Forecasting Model
By John G. Michalakes and Dr. Thomas C. Oppe

John G. Michalakes
Senior Software Engineer

Mesoscale and
Microscale Meteorology

NCAR

Dr. Thomas C. Oppe
Computational

Scientist
CS&E Group
ERDC MSRC

WRF is similar to MM5, the PSU/NCAR Mesoscale
Model, in many respects, and both codes have a
common institutional heritage in the NWP community.
The development of WRF started in 1998, but the code

was in planning before that time. The first alpha
community release of the software occurred near the
end of 2000. A major beta release of the software
occurred in May 2003 as WRF 1.3. A full research
community release occurred in May 2004 as WRF 2.0.
Operational implementation of WRF is underway at the
National Oceanic and Atmospheric Administration
(NOAA) National Centers for Environmental Predic-
tion (NCEP) and at the U.S. Air Force Weather
Agency (AFWA). A joint NOAA/National Center for
Atmospheric Research (NCAR)/DoD Developmental
Testbed Center has been formed to facilitate the
ongoing testing, evaluation, and transition of new
developments from the research community into
operations at NCEP, AFWA, and at the U.S. Navy.
WRF was introduced into the DoD HPCMP application
benchmark test suite as a climate/weather/ocean
modeling and simulation (CWO) component with TI-05.
The version used was WRF 2.0.2.

The WRF Model contains numerous options for
physical parameterizations and two choices for dynami-
cal core, providing maximum flexibility across institu-
tions and applications. The NCAR-developed Ad-
vanced Research WRF (ARW) used for this bench-
mark employs a time-split high-order Runge-Kutta

Figure 1. Still image from a WRF simulation of
Hurricane Ivan in September 2004. (For the WRF

animation of the hurricane, see www.mmm.ucar.edu/wrf/
WG2/wrf_moving_nest.gif)

ERDC MSRC Resource, Spring 2005 19

the following HPC systems: the 1.3-GHz IBM POWER4
(Marcellus) at the NAVO MSRC, the 700-MHz SGI
Origin 3900s (Sand/Silicon) at the ERDC MSRC, the
1-GHz Compaq SC45 (Emerald) at the ERDC MSRC,
the 1.7-GHz IBM POWER4+ (Kraken) at the NAVO
MSRC, and the 3.06-GHz LNX Xeon cluster (Powell) at

the ARL MSRC. The standard TI-05 test case scales up
to 64 processing elements (PEs), with the IBM
POWER4+ (Kraken) demonstrating the best perfor-
mance with a next-best performance on the Compaq
SC45 and IBM POWER4 (Emerald and Marcellus).

method to integrate a conservative formulation of the
compressible nonhydrostatic equations for mass and
momentum. ARW is supported to the research commu-
nity as WRF Version 2 and is undergoing operational
implementation at the AFWA. NOAA/NCEP opera-
tional implementation of WRF is using dynamics
adapted to the WRF Advanced Software Framework
(ASF) from the Nonhydrostatic Mesoscale Model
(NMM). The Naval Research Laboratory Marine
Meteorology Division is adapting the COAMPS
(Coupled Ocean/Atmospheric Mesoscale Prediction
System) model so that both COAMPS and WRF will
use unified physics through a common interface within
the WRF framework; in addition, COAMPS and WRF
will be interoperable with respect to data conventions
and formats.

One of the key objectives in the WRF project has
been development of a software framework for
mesoscale modeling that is efficient, portable, maintain-
able, and extensible, thus allowing incremental and
rapid development of new algorithms while maintaining
overall consistency and adherence to architecture and
interface requirements. The WRF 2.0 release supports
the full range of functionality envisioned for the model,
including efficient scalable performance on a range of
HPC platforms, multiple dynamic cores and physics
options, low-overhead two-way interactive nesting,
moving nests, support for model coupling, and
interoperability with other common model infrastructure

efforts such as the Earth System Modeling Framework
(ESMF). The WRF ASF features a modular, hierarchi-
cal organization of the software that insulates scientific
code from parallelism and other architecture-, imple-
mentation-, and installation-specific concerns. This
design has also been crucial for managing the complex-
ity of a single-source-code model for a range of users,
applications, and platforms. A flexible approach for
parallelism is achieved through a two-level decomposi-
tion in which the model domain may be subdivided into
patches that are assigned to distributed-memory nodes
and then may be further subdivided into tiles that are
allocated to shared-memory processors within a node.
Model layer subroutines are required to be tile callable,
that is, thread-safe and callable for an arbitrarily sized
and shaped subdomain. All data must be passed
through the argument list (state data) or defined locally
within the subroutine. No COMMON or USE-associated
state array with a decomposed dimension is allowed.
Domain, memory, and run dimensions for the subroutine
are passed separately and unambiguously. This approach
addresses all current models for parallelism (single-
processor, shared-memory, distributed-memory, and
hybrid) and is flexible with respect to processor type:
tiles may be sized and shaped for cache blocking or to
preserve maximum vector length.

WRF is written in FORTRAN 90 and C. It uses
MPI calls and OpenMP compiler directives to achieve
parallelism. WRF currently runs on the following systems:

Figure 2. WRF performance on selected DoD HPC platforms

20 ERDC MSRC Resource, Spring 2005

Synthetic benchmarks used in TI-05 are a group of tests
developed by Instrumental, Inc., for the DoD HPCMP. The
various tests measure the performance of all the main
subsystems of HPC systems and provide a picture of the
best features the machine has to offer, as well as where
bottlenecks or design flaws can negatively impact the
system as a whole.

The goal of the synthetics is to understand the “Whys?” of
machine performance. While the application benchmarks might
show that two machines proposed from two vendors have
different run times, the synthetics can point to the reason of the
performance difference, which can be something as simple as
cluster interconnect latency. The Synthetics Benchmark Suite
comprises five groups of tests, CPUBench, MEMBench,
NETBench, OSBench, and StreamingIO.

CPUBench contains a series of tests that measure single
CPU computational performance of common computational
kernels. These tests are performed in a cache-friendly and
cache-unfriendly way with multiple operand sizes (32- and
64-bit words) and with both C and FORTRAN compilers.
The results of these nearly 150 tests can be plotted to show
a 3-D surface of the profile of each system’s computational
properties with respect to cache, word size, and compiler
choice. CPUBench also has multi-CPU tests using various
linear algebra libraries (BLAS, SCALAPACK, and a
parallel conjugate gradient solver) that measure the
scalability of the system for parallel applications.

Since memory subsystems typically operate at clock-
cycle rates many times slower than CPU-instruction execu-
tion times, memory performance significantly affects overall
HPC system performance. MEMBench tests memory
performance by measuring a variety of memory operations
in varying patterns to show how memory read-ahead
performs, how memory stride patterns affect overall
memory bandwidth, and how memory operations perform in
a parallel environment. More complex memory-access
operations are measured with several Fast Fourier Transform

Synthetic Benchmarks for TI-05
By Cal Kirchhof and Henry Newman

(FFT) tests at various matrix sizes, and using both
MPI and OpenMP parallel-programming libraries.

NETBench measures the performance of the
network of interconnected CPUs in a cluster or
other multiprocessor system. In these systems, a
CPU may be required to perform a significant
amount of memory accesses from remote nodes.
Poor performance on these operations can have
severe impacts on general system performance.
NETBench measures performance of blocking
and nonblocking transfers from one node to
another, collective broadcasts (one node sending to
all other nodes), and the collective Allreduce test
(one node receiving transfers from all other
nodes). Additionally, NETBench measures the
ability of the interconnect to respond to rapidly
changing back-and-forth transfers (ping-pong
operations) that are both blocking and nonblocking
as well as bi-directional, blocking and nonblocking
ping-pong operations with blocks up to 16 MBytes.

OSBench measures the operating system’s
performance on various system calls. It measures
read and write performance for both external
storage and pipes. OSBench measures the ability
of the operating system to scale transmission-
control-protocol (TCP) performance over a range

Cal Kirchhof
BPA Program Manager

Instrumental, Inc.

Henry Newman
Chief Technical Officer

Instrumental, Inc.

ERDC MSRC Resource, Spring 2005 21

IBM SP, SGI Origin and Altix platforms, Compaq SC45 and
Alpha True64 platforms, Cray X1, and Linux clusters using
Alpha, Pentium, Xeon, Itanium, or Opteron processors and
Intel or Portland Group compilers.

The WRF TI-05 benchmark consisted of one case, called
the standard case. This case was a 48-hour Continental
U.S. (CONUS) simulation using a 12-km spatial resolution
in the horizontal dimensions. The horizontal grid was 425 by
300 cells and also had 35 vertical levels. Input and output
for the TI-05 benchmark test case was generally done using
NetCDF, although two large big-endian IEEE binary files

and several small ASCII files containing input data
to initialize particular physics packages were also
required. NetCDF was used for the creation of the
main output file containing the state field variables.
The model was run in distributed-memory parallel
mode, for which WRF can scale in the 60- to 80-
percent parallel efficiency range to approximately
256 processors. Figure 2 gives the run times for
WRF on selected HPC platforms in the DoD
MSRCs.

of CPU counts. It also measures the operating
system’s performance on IPv4 and IPv6 networking
stacks with test strategies similar to ping-pong tests in
NETBench.

Over the years where the synthetics benchmarks have
been used, IOBench has included a number of intense I/O
tests sometimes requiring many hours to run. In TI-05,
IOBench was scaled back and replaced with
StreamingIO to test simple, but large, I/O operations
involving sequential writes, sequential reads, and full
duplex read/writes (i.e., simultaneous reading and writing).

The benchmarking process begins with the vendors
running the application and synthetic benchmarks on
systems they hope to sell to the U.S. Government. The
vendors pick systems and configurations they feel will
meet or exceed the Government’s needs and run the
benchmarks on those systems. After the U.S. Govern-
ment procures a system, the benchmarks are run again
to ensure that the systems are delivering the perfor-
mance as promised. Each year as a part of the current
TI process, the benchmarks are run again. This
provides an updated look at how the system is perform-
ing based on its configuration at that point; and com-
bined with the results of all the systems in the HPCMP,
it provides a baseline for what the Government will
require from vendors in the upcoming TI cycle.

Application and synthetic benchmarks are used
together in measuring and evaluating systems. The
application benchmarks provide reliable measures of

how those representative applications can be expected
to perform on systems under evaluation, as well as
good indications of the performance of similar codes.
When applications have unexpected benchmark results
with respect to a particular type of architecture or
configuration, the synthetic benchmark results can be
used to focus on particular subsystems or interactions
among subsystems to track down the cause of unex-
pected results, good or bad.

Synthetic benchmarks were introduced in FY 2001
and have been continually upgraded and enhanced
since that time. Many of the changes increased the
coverage of various aspects of the systems and sub-
systems tested. Extensive changes have been made to
some of the variables measured, as has been the case
with IOBench. For TI-06, a number of the individual
tests have been combined into a smaller set of tests,
and some have been dropped either because they are
now outdated or have been found to be redundant. The
goal for future versions of the Benchmark Suites is to
reduce the time required for the vendors to prepare and
execute them. This may be accomplished by cutting
back on the number of tests or by increasing the level
of automation, while still maintaining complete system-
measurement coverage. As technology changes and
new features are added to HPC systems, the bench-
mark tests will change to ensure that those features are
properly measured and evaluated.

The High Performance Computing Challenge
benchmark, or HPCC, complements the LINPACK
benchmark, which is used to rank HPC systems in the
Top 500 list according to their performance. As such,
HPCC is a synthetic benchmarking program. It in-
cludes the LINPACK benchmark to measure the
floating-point rate to solve a dense system of linear
equations. However, HPCC performs six additional
benchmark tests to determine the overall capabilities of
the systems running it.

The first of these is a double-precision matrix-matrix
multiplication, performed by the Basic Linear Algebra
Subprograms (BLAS) algorithm DGEMM, to deter-
mine the performance rate for double-precision float-
ing-point execution. The second benchmark measures
the sustainable-memory bandwidth and corresponding
computation rate for a simple vector kernel. After that,
HPCC performs a parallel matrix transposition to
determine the total communication capacity of the

Benchmarking the Locality Space with HPCC
By Dr. Paul M. Bennett

system’s network. HPCC then
measures the rate of integer
updates to random memory
locations, after which it
measures the computation
rates to perform a double-
precision complex FFT. HPCC
finishes its work with a set of
tests that measure the latency
and bandwidth of several simul-
taneous communication patterns.

The benchmark routines
performed by HPCC can be used to bound the perfor-
mance of many typical HPC applications in terms of
spatial and temporal locality, four of which are pre-
sented in Figure 1. Each of HPCC’s benchmarking
routines is characterized by a certain degree of spatial
and temporal locality in data access patterns, according
to which they are plotted in the figure. Each routine is

22 RDC MSRC Resource, Spring 2005

Dr. Paul M. Bennett
Computational

Scientist
CS&E Group
ERDC MSRC

used in global tests, embarrassingly parallel tests, or
single-process tests, as indicated by the letters G, EP,
and SP.

HPCC produces a text file that the user can submit to
the Web site http://icl.cs.utk.edu/hpcc by following the
link to upload data. At the time of writing, benchmark
results for 54 systems can be found at that site by
following the link to view the results.

The on-line results can be displayed according to any
one of several different criteria, including speed of the
CPU, manufacturer of the CPU, manufacturer of the
HPC system, and so on. At the time of writing, each
system has five or eight benchmark times of various
categories, which together describe its overall perfor-
mance. Notably, no one system outperforms all others
in every category. For example, while the ERDC
MSRC’s Cray T3E outperformed all other listed
systems with the best random access performance, it
had only 9.4 percent of the top performance on the
LINPACK, or HPL, benchmark. The listed system

with the best High Performance LINPACK (HPL)
performance is the Cray X1 at Oak Ridge National
Laboratory.

The HPCC benchmark was produced at the Innova-
tive Computing Laboratory (ICL) at the University of
Tennessee, Knoxville, through a project sponsored by
the National Science Foundation (NSF), DOE, and
Defense Advanced Research Projects Agency
(DARPA) HPC systems. The DoD HPCMP was
asked to assist in Fall 2003 by performing HPCC
benchmarks on HPC systems at each MSRC. Several
updates have been made to HPCC since that time, and
the ERDC MSRC continues to provide assistance by
maintaining current HPCC benchmarks. More informa-
tion about HPCC can be found at the above-mentioned
Web site.

The author would like to acknowledge Dr. Piotr
Luszczek, ICL, at the University of Tennessee, for his
suggestions and assistance with this article and the ICL
team for the Figure 1 graphic.

Figure 1. Bounding the performance of four typical HPC applications in terms of spatial and temporal locality

23 ERDC MSRC Resource, Spring 2005

This article describes the rationale and methodology used to assign benchmark
scores to HPC machines in the HPCMP. It also shows the input data needed and some
sample output.

Certain terms and concepts are key to understanding the rationale behind the scoring
scheme that has been developed. Of these, two of the most important terms are the
baseline system (BLS) and the system under test, or SUT.

The BLS is a particular system, chosen anew every year from systems in the
HPCMP. During TI-05, for example, the machine chosen was Marcellus, an IBM
Power4 located at the NAVO MSRC. The criteria for choosing a BLS are speed,
stability, and maturity. Thus, while the BLS should not be an old machine, neither should
it be the newest in the Program. Fast and dependable are both key in the selection of
the BLS.

In general terms, the scoring procedure seeks to measure the performance of each
SUT relative to the chosen BLS. In benchmarking, the performance of any system is
typically measured by recording the wall time1 for the execution of certain specific
codes (benchmark codes) for given numbers of processors. The expectation is that the
wall time needed to execute a given code will decrease as more processors are
brought to bear on the program being run. When this decrease is both significant and
steady, the benchmark code is said to scale well. In this vein, the scoring scheme
described here rewards good scaling behavior with a higher score and conversely
punishes bad scaling with a lower score. This rationale should be kept in mind as the
scoring procedure is described.

To begin, each benchmark code is run on the BLS to generate at least two (and
preferably three or more) wall times T1,T2T3,... at increasing processor counts
n1,n2n3,... . One of these processor counts is predetermined and is called the baseline
number of processors. The time needed to run the given code on the SUT using this
baseline number of processors is called the baseline time, or BLT.

These times are then inverted to obtain a new quantity, called performance 1P T= .
For each SUT, the resulting data, composed of processor/performance pairs
(ni, Pi), are fit to a power law P(n) = anb by performing a linear least-squares fit.

With BLT, a and b computed, a new quantity, cpus_std, can be computed as

()

1

1
BLT

b
cpus_ std

a
⎛ ⎞

= ⎜ ⎟⎝ ⎠
.

This formula takes the BLT, recorded from the BLS, and uses it to compute the number of processors of the
SUT that would be needed to match the baseline time of the BLS. Then, an alternate quantity is computed:

() ()
BLT

cpus@max t max t
cpus alt = .

Both cpus_std and cpus_alt are an attempt to express the performance of the SUT in units of BLS processors.
However, while both quantities use the BLT, cpus_std uses the power law and its coefficients, while cpus_alt
effectively performs a linear interpolation based on the number of processors used when the maximum wall time
for this test case was measured (cpus@max_t).

Stat.pl: Automating the Scoring of Benchmark Systems
By Drs. Alvaro Fernández and William A. Ward, Jr.

Dr. William A. Ward, Jr.
CS&E Group Lead

ERDC MSRC

Dr. Alvaro Fernández
Computational Scientist

CS&E Group
ERDC MSRC

1 The time an observer, looking at a clock on the office wall, would measure from the start of a program to its
successful end.

24 ERDC MSRC Resource, Spring 2005

Some additional quantities needed to compute the overall score are as follows:
1. Compute_cpus: the number of processors the SUT has available for processing
2. Machine_fraction: the typical fraction of the total machine this benchmark codes uses (e.g., 1/16)

Once all the preceding quantities are computed, the complete calculation of the score essentially employs the
curve fit to project the performance of the SUT at the required number of CPUs for each test case. Once that is
accomplished, the overall score is computed taking into account the scaling of the code (the exponent “b”) and the
number of CPUs the code typically would use (compute_cpus and machine_fraction).

. . .implementation of scoring algorithm
Processing of this information is automated by Stat.pl, 2,000-line Perl script. The input data are organized into

hierarchical objects, or blocks. The types of blocks are system blocks, test case blocks, and score blocks. System
blocks describe the attributes of the computer system, such as its name, interconnect, etc. Each system block may
contain one or more test case blocks, which contain actual run information, such as processor counts and wall
times. Score blocks contain information relating to all systems and test cases being processed, e.g., the BLS’s
name, how many CPUs it has, the machine fractions. There is one system block per SUT and one overall score
block.

Stat.pl reads in these blocks from properly formatted text files and generates one spreadsheet in comma
separated value (CSV) format for each test case. These spreadsheets summarize the statistics for each SUT in
the given test case.

Stat.pl also generates multiple PDF files (one for every test case) containing performance plots, a typical
example of which is shown in Figure 1. The SUT for this example is Marcellus, the BLS. The benchmark code
AVUS is being run as a large test case. One notes the reported parameters for the curve fit (a, b, and rsq) are
reported in the plot. The exponent b is slightly more than one, indicating better than linear scaling; rsq is also one,
indicating a good fit. The BLP and n_BLP are both plotted on the performance curve.

Future work will include embedding the scoring procedure and its data structures in a database, as well as
providing a smoother interface to the price/performance/workload allocation optimizer.

ERDC MSRC Resource, Spring 2005 25

Figure 1. A representative plot generated by Stat.pl for the AVUS benchmark code running on Marcellus.
One can note the power law exponents reported. Scaling is excellent

26 ERDC MSRC Resource, Spring 2005

technique is a wise use of
resources, since the former
requires, in many cases, 32 or
more processors to yield a
solution in near-real-time (i.e.,
within an hour), while the
latter (for the same problem)
requires a single processor
producing a solution within
a few seconds. The strategic
selection of the former stems
from the HPCMP’s desire to
uncover the top 10,000 acquisition possibilities to allow
exhaustive analysis of the price-per-performance space.
In such a case, the time-to-solution for the linear program-
ming technique is dilated by a few percent, while that for
the integer programming technique balloons to days or
weeks. As an example of how price-per-performance
results might be presented to decision makers, Figure 1
provides a comparison of the best possibility versus the
average of the top 10,000 possibilities for TI-05.

The HPCMP optimizer was developed in early 2003
by time and resources provided by the Army Research
Laboratory (ARL) in conjunction with the HPCMP.
This tool provided the core price-per-performance
analysis for both the 2004 and 2005 HPCMP technol-
ogy insertions. Further information can be found in
“The 5 Myths of the HPCMP Optimizer” published in
this summer’s edition of the ARL Link.

Analysis of price-per-performance, one of several
important aspects considered during an HPCMP TI,
involves hundreds of parameters ranging from indi-
vidual benchmarking results to offered system pricing;
therefore, a reliable tool that ties all of these quantities
together can prove essential when conducting an HPC
acquisition worth tens of millions of dollars. The
HPCMP optimizer is a near-real-time, task-parallelized,
linear optimization solver that processes pricing,
benchmarking results, acquisition budget limitations, and
a cryptic description of the target workload into two
outputs – the most critical of which is the ideal quantity
of each offered system that should be purchased and
the lesser being the ideal allocation of systems (both
elements being gauged solely in terms of price-per-
performance). Put simply, to the extent that the applica-
tion test cases constructed by the performance team
are representative of the true workload, the HPCMP
optimizer determines what systems to buy and how
work should be distributed among the selected and
already owned systems in an optimal sense when
considering only bang-per-buck.

It would seem that the concepts behind this sort of
insightful analysis would have been exhaustively
explored by now. In many regards, they have. Optimi-
zation gained its momentum in World War II as the
number of logistical and tactical variables mushroomed,
sowing the seed for a discipline commonly referred to
as operations research. The end products of optimiza-
tion can now be seen in
many somewhat hidden, but
very powerful, ways
ranging from advertisement
strategies aimed at cost-
effective penetration of the
consuming public to the
bent wingtips typically seen
on Boeing 737s.

So why is so much
enthusiasm being placed
behind a technique that is
ancient by technological
standards? Most of the
energy can be attributed to
the tool’s ability to rapidly
solve the quantitative TI-
XX problem. Some debate
exists regarding whether
using a linear programming
technique rather than an
integer programming

Analyzing Price per Performance
By Dr. Roy L. Campbell, Jr.

Dr. Roy L. Campbell, Jr.
HPCMP Performance
Team Vice-Chair, ARL

Figure 1. TI-05 price per performance results

ERDC MSRC Resource, Spring 2005 27

Below is a list of acronyms commonly used among the DoD HPC community. These acronyms are used through-
out the articles in this newsletter.

AERO Aeroelastic CFD/CSM
AFRL Air Force Research Laboratory
AFWA U.S. Air Force Weather Agency
AHPCRC Army High Performance Computing

Research Center
AMR Adaptive Mesh Refinement
ARL Army Research Laboratory
ARSC Arctic Region Supercomputing Center
ARW Advanced Research WRF
ASC Aeronautical Systems Center
ASCII American Standard Code for

Information Interchange
ASF Advanced Software Framework
AVUS Air Vehicles Unstructured Solver
BLAS Basic Linear Algebra Subprograms
BLP Baseline Performance (1/BLT)
BLS Baseline System
BLT Baseline Time
CFD Computational Fluid Dynamics
CHARTD Computational Hydrodynamics and

Radiative Thermal Diffusion
CHSSI Common High Performance Com-

puting Software Support Initiative
COAMPS Coupled Ocean/Atmospheric Mesoscale

Prediction System
CONUS Continental United States
CPU Central Processing Unit
CS&E Computational Science and

Engineering
CSM Computational Structural Mechanics
CSQ CHARTD Squared
CSV Comma Separated Value
CTA Computational Technology Area
CTH CSQ to the Three-Halves
CWO Climate/Weather/Ocean Modeling

and Simulation
DARPA Defense Advanced Research Projects

Agency
DES Detached Eddy Simulations
DGEMM Double Precision General Matrix

Multiply
DoD Department of Defense
DOE Department of Energy
EPS Encapsulated Postscript

ERDC U.S. Army Engineer Research and
Development Center

ESMF Earth System Modeling Framework
ESSL Engineering and Scientific Subroutine

Library
FFT Fast Fourier Transform
FLOPS Floating-Point Operations per Second
FY 2005 Fiscal Year 2005
GAMESS General Atomic and Molecular

Electronic Structure System
GSA General Services Administration
HPC High Performance Computing
HPCC High Performance Computing

Challenge Benchmark
HPCMP High Performance Computing

Modernization Program
HPCMPO HPCMP Office
HPCS High Performance Computing Systems
HPL High Performance LINPACK
HYCOM Hybrid Coordinate Ocean Model
ICL Innovative Computing Laboratory
IEEE Institute of Electrical and Electronics

Engineers
I/O Input/Output
LSQ Load Store Queue
MHPCC Maui High Performance Computing

Center
MICOM Miami Isopycnic-Coordinate Ocean

Model
MM5 Mesoscale Model 5
MPI Message Passing Interface
MSRC Major Shared Resource Center
MUSCL Monotone Upwind Scheme for Scalar

Conservation Laws
NASA National Aeronautics and Space

Administration
NAVO Naval Oceanographic Office
NCAR National Center for Atmospheric

Research
NCEP National Centers for Environmental

Prediction
NetCDF Network Common Data Form
NLOM Naval Research Laboratory Layered

Ocean Model

acronyms

28 ERDC MSRC Resource, Spring 2005

NMM Nonhydrostatic Mesoscale Model
NOAA National Oceanic and Atmospheric

Administration
NRL Naval Research Laboratory
NSF National Science Foundation
NWP Numerical Weather Prediction
OOCORE Out of Core
PE Processing Element
PET Programming Environment and

Training
POSS Polyhedral Oligomeric Silsesquioxane

PSU Pennsylvania State University
PVP Parallel Vector Processor
RF-CTH Reduced Functionality CTH
SHMEM SHared MEMory
SLIC Simple Line Interface Construction
SUT System Under Test
TCP Transmission Control Protocol
TI Technology Insertion
TI-05 Technology Insertion 2005
UAV Uninhabited Air Vehicle
WRF Weather Research and Forecast

acronyms

For the latest on training and on-line registration, one can
go to the Programming Environment and Training (PET)

On-line Knowledge Center Web site:

https://okc.erdc.hpc.mil

Questions and comments may be directed to PET
at (601) 634-3131, (601) 634-4024, or

PET-Training@erdc.usace.army.mil

training schedule

